Feed aggregator

Research Filter: Proxima b, global warming and the Zika virus

ABC Environment - Thu, 2016-08-25 18:45
How long until we can send someone to the newly discovered earth-like planet, Proxima b? RN Drive puts the latest science news through the Research Filter.
Categories: Around The Web

Of hungry badgers and hidden worms

The Guardian - Thu, 2016-08-25 14:30

Old Warden, Bedfordshire In this parched landscape it was clear the hedgerow fruit had not ripened a moment too soon for the badgers

It took only a few dry weeks for the fields on the plateau above the village to forget that it had ever rained. The clay soil was beginning to crack, the footpath had turned to a sun-baked dirt track and there was no yield underfoot. Every bump and stone was hard and uncompromisingly contoured, jabbing at an instep, stubbing a toe.

The worms had become dustbowl refugees in this parched landscape, sinking deep underground. Far below my feet, they would be aestivating, bunched up in knots, coated in their own mucus in a hibernation-like suspension of active life, waiting for moisture to come again.

Continue reading...
Categories: Around The Web

What will COAG reforms mean for Australia’s gas ringmaster?

RenewEconomy - Thu, 2016-08-25 14:00
Gas has a problem. Without a carbon price, it's more expensive than coal. With a carbon price, it struggles to compete with renewables and storage.
Categories: Around The Web

US solar PV prices hit “all-time low”, at rooftop and utility-scale

RenewEconomy - Thu, 2016-08-25 13:36
Large scale solar contracts fall to $US30/MWh as solar prices fall in US - on rooftops and for solar farms.
Categories: Around The Web

CSIRO-made smart solar and storage system launched by Evergen

RenewEconomy - Thu, 2016-08-25 12:14
A solar and storage energy management system developed by CSIRO and backed by AMP Capital has been launched in Australia.
Categories: Around The Web

What does the Paris 1.5˚C warming limit mean for Australia?

RenewEconomy - Thu, 2016-08-25 12:08
What does last year's Paris agreement mean for Australia’s climate policy and decarbonisation?
Categories: Around The Web

ACCC says it’s OK for big utilities to use their market power

RenewEconomy - Thu, 2016-08-25 11:37
ACCC says it's perfectly OK for big utilities to exercise their market power and force up prices, as they did to devastating effect in South Australia last month. And although the regulator identified the lack of competition in the state a decade ago, it still chooses to take a pot-shot at renewables.
Categories: Around The Web

Cross currents hit India Government’s grand coal expansion plans

RenewEconomy - Thu, 2016-08-25 11:26
India Government’s plan to dramatically expand coal power production is being buffeted by growing concern about worsening air quality, sluggish power demand.
Categories: Around The Web

Industrial Revolution kick-started global warming much earlier than thought

RenewEconomy - Thu, 2016-08-25 11:25
New study redefines our understanding of when human activity began to influence our climate.
Categories: Around The Web

154 Australian scientists demand climate policy that matches the science

RenewEconomy - Thu, 2016-08-25 11:24
154 Australian experts have signed on open letter to Malcolm Turnbull demanding urgent action on climate change.
Categories: Around The Web

Climate scientists write another letter warning of unfolding crisis for Turnbull to ignore

The Guardian - Thu, 2016-08-25 11:13

More than 150 leading climate scientists at universities and government agencies ask for cuts to coal exports, saying: ‘There is no Planet B’

I’m guessing that Malcolm Turnbull gets a fair few letters on any given day. You wonder how he has the time to read them all.

How do you prioritise the ones worth your attention, and the ones that you can toss in the round-shaped filing cabinet under your desk?

Continue reading...
Categories: Around The Web

Pneumatic octopus is a first for soft robotics

BBC - Thu, 2016-08-25 10:27
Engineers in the US have built a self-contained, entirely soft robot - in the shape of a 7cm octopus.
Categories: Around The Web

Meet the octobot: A first for soft robotics

BBC - Thu, 2016-08-25 10:27
For the first time, a soft robot has been built that moves on its own with no batteries or cables.
Categories: Around The Web

Climate warming 'started about 180 years ago'

ABC Science - Thu, 2016-08-25 09:35
CLIMATE DATA: Human-induced global warming began as early as the 1830s just as the Industrial Revolution was gaining steam, a new study shows.
Categories: Around The Web

Seeking ET

BBC - Thu, 2016-08-25 09:28
How do astronomers decide whether a planet is potentially habitable?
Categories: Around The Web

The Industrial Revolution kick-started global warming much earlier than we realised

The Conversation - Thu, 2016-08-25 06:27
Britain's industrial pioneers couldn't have known how they would affect the climate. Henry Gastineau

In the early days of the Industrial Revolution, no one would have thought that their burning of fossil fuels would have an almost immediate effect on the climate. But our new study, published today in Nature, reveals that warming in some regions actually began as early as the 1830s.

That is much earlier than previously thought, so our discovery redefines our understanding of when human activity began to influence our climate.

Determining when global warming began, and how quickly the planet has warmed since then, is essential for understanding how much we have altered the climate in different parts of the world. Our study helps to answer the question of whether our climate is already operating outside thresholds that are considered safe for human society and functional ecosystems.

Our findings show that warming did not develop at the same time across the planet. The tropical oceans and the Arctic were the first regions to begin warming, in the 1830s. Europe, North America and Asia followed roughly two decades later.

Surprisingly, the results show that the southern hemisphere began warming much later, with Australasia and South America starting to warm from the early 20th century. This continental-scale time lag is still evident today: while some parts of Antarctica have begun to warm, a clear warming signal over the entire continent is still not detectable.

The warming in most regions reversed what would otherwise have been a cooling trend related to high volcanic activity during the preceding centuries.

Global warming got underway much earlier in the north.

By pinpointing the date when human-induced climate change started, we can then begin to work out when the warming trend broke through the boundaries of the climate’s natural fluctuations, because it takes some decades for the global warming signal to “emerge” above the natural climate variability.

According to our evidence, in all regions except for Antarctica, we are now well and truly operating in a greenhouse-influenced world. We know this because the only climate models that can reproduce the results seen in our records of past climate are those models that factor in the effect of the carbon dioxide released into the atmosphere by humans.

These remarkable findings were pieced together from the most unusual of sources – not thermometers or satellites, but rather from natural climate archives. These include coral skeletons, ice cores, tree rings, cave deposits and ocean and lake sediment layers, all of which record the climate as they grow or accumulate.

These archives provide long records that extend back 500 years – well before the Industrial Revolution – and provide a critical baseline for the planet’s past climate, one that is impossible to obtain otherwise.

But why is there no clear warming fingerprint yet seen across Antarctica? The answer most likely lies in the vast Southern Ocean, which isolates the frozen continent from the warming happening elsewhere.

The westerly winds that circulate through the Southern Ocean around Antarctica keep warm air masses from lower latitudes at bay. Ozone depletion and rising greenhouse gas concentrations during the 20th century have also caused this wind barrier to get stronger.

The Southern Ocean currents that flow around Antarctica also tend to move warmer surface waters away from the continent, to be replaced with cold deeper water that hasn’t yet been affected by surface greenhouse warming. This process could potentially delay Antarctica’s warming by centuries.

Ocean insulation

The delay in warming observed in the rest of the southern hemisphere is something we do not yet fully understand. It could simply be because fewer records are available from the southern hemisphere, meaning that we still don’t have a full picture of what is happening.

Alternatively, like Antarctica, the southern hemisphere’s oceans could be holding back warming – partly through winds and currents, but perhaps also because of “thermal inertia”, whereby the ocean can absorb far more heat energy than the atmosphere or the land before its temperature markedly increases. Bear in mind that the southern half of the globe has much more ocean than the north.

Essentially, then, the coolness of the southern hemisphere’s vast oceans could be “insulating” Australasia and South America from the impact of global warming. The question is, for how long?

If our evidence of delayed warming in the southern hemisphere holds true, it could mean we are in in for more climate surprises as global warming begins to overcome the thermal inertia of our surrounding oceans. Could the recent record warming of Australian waters, and the subsequent damage to the Great Barrier Reef, be an early sign that this is already occurring?

Recent research suggest that the mass bleaching event of the reef was made 175 times more likely by climate change. Following the recent severity of such extremes, a better understanding of how anthropogenic greenhouse warming is already impacting the southern hemisphere is critical.

What to do about it

Leading scientists from around the world met in Geneva last week to discuss the goal of limiting average global warming to 1.5℃ – the more ambitious of the two targets enshrined in the Paris climate agreement.

Last year, global temperatures crossed the 1℃ threshold, and 2016 is on track to be 1.2-1.3℃ above our climate baseline.

But here’s the kicker. That baseline is relative to 1850–1900, when most of our thermometer-based temperature records began. What our study shows is that for many parts of the world that estimate isn’t good enough, because global warming was already under way, so the real baseline would be lower.

The small increases in greenhouse gases during the 19th century had a small effect on Earth’s temperatures, but with the longer perspective we get from our natural climate records we see that big changes occurred. These fractions of a degree of extra warming might seem insignificant at first, but as we nudge ever closer to the 1.5℃ guardrail (and potentially beyond), the past tells us that small changes matter.

Helen McGregor will be online to answer your questions from 2pm AEST today. Post a query in the comments below.

The Conversation

Helen McGregor receives funding from the Australian Research Council and the University of Wollongong, Australia.

Joelle Gergis receives funding from the Australian Research Council.

Nerilie Abram receives funding from the Australian Research Council.

Steven Phipps receives funding from the Australian Antarctic Science Program, the Australian Research Council, the International Union for Quaternary Research, the National Computational Infrastructure Merit Allocation Scheme, the New Zealand Marsden Fund, the University of Tasmania and UNSW Australia.

Categories: Around The Web

Sustainable housing's expensive, right? Not when you look at the whole equation

The Conversation - Thu, 2016-08-25 06:27

Low-energy or zero-energy housing is international best practice, but is still considered costly. Part of the problem is that studies of housing standards typically use only cost-benefit analysis to assess their value, and so often wrongly conclude that sustainable housing is unaffordable.

Our new research shows how such analyses may miss some flow-on financial benefits – such as reduced energy bills and lower mobility costs. Most importantly, these analyses also overlook effects on householders' health and quality of life arising from factors such as improved thermal comfort.

Sustainable housing can also have important benefits for some of the most vulnerable members of our community, as the report released this week shows.

The environmental performance of Australian housing has improved slowly, associated with changes in minimum building regulations and the creation of subsidies such as solar rebates. This is despite sustainable housing having many documented benefits, including lower (or non-existent) utility bills and greenhouse gas emissions, and improved comfort and health.

Conventional cost-benefit analyses exclude these benefits. That leaves significant gaps in the story that could be used to support investment in sustainable housing.

What did the study assess?

Our study involved a three-year, mixed-method evaluation of a small sustainable housing development in Horsham, Victoria. Commissioned by the Victorian Department of Health and Human Services (DHHS), the study used both quantitative and qualitative methods, which are rarely combined to assess housing policy and environmental performance.

Four two-bedroom, nine-star-rated (under the National House Energy Rating Scheme, NatHERS) houses were built to maximise passive solar principles. The design elements and technologies used included (partial) reverse brick-veneer construction, double-glazed windows, solar hot water, a 1.5-kilowatt solar photovoltaic system and a shared 5,000-litre rainwater tank.

The houses were built without air conditioning. They do have ceiling fans and gas heating in the living area.

We evaluated these nine-star houses against seven control houses also in Horsham and built to DHHS standards, with a six-star NatHERS rating. We also compared the results to a DHHS technical model of standard industry practice. We conducted a traditional cost-benefit analysis, technical performance analysis (utility consumption, internal temperature), three rounds of interviews with the householders during different seasons, and a personalised household sustainability assessment.

Through a traditional cost-benefit lens, the nine-star housing was not financially viable for DHHS. Even if DHHS was able to capture the savings to the householders, payback was only achieved within 40 years for one of the four dwellings in a high-energy-price future. This was due to higher-than-expected capital costs for the sustainability initiatives.

Falling short: the conventional cost-benefit outcome for the nine-star houses. RMIT Centre for Urban Research, DHHS

However, resale value could be up to A$40,000 higher per unit. The technical performance analysis also identified significant benefits for the nine-star households. These included reduced utility consumption and bills. One occupant told us:

Look, I haven’t paid any off my power bill in six months and I’m still in credit.

We found that these households:

  • were A$1,000 a year better off as a result of reduced utility consumption (including solar feed-in tariff);

  • purchased 45% less electricity than the control households (and 73% less than the standard industry practice);

  • consumed 22% less water (30% less than the industry standard);

  • had 40% less CO₂ environmental impact from power use (63% less than the industry standard); and

Car equivalent of environmental performance. RMIT Centre for Urban Research, DHHS
  • were comfortable with the indoor temperature of their house for 10% more of the time (even without air conditioning).
Summary of average annual utilities consumed/generated from each dwelling. RMIT Centre for Urban Research, DHHS

Extreme weather events magnified the comfort benefits. On a second consecutive day above 41℃, the nine-star houses were up to 16.6℃ cooler (without air conditioning) compared to the department’s standard six-star house (which had air conditioning).

This meant householders could stay at home during heatwaves rather than needing to seek alternative accommodation, which happened sometimes for the control households. One occupant said:

…in summer I would sit down at the supermarket, you know, because it was cool … [Now] I can stay home and veg out.

Temperature in the living rooms of monitored houses and external temperature for January 18-19, 2013. RMIT Centre for Urban Research, DHHS Residents confirm well-being benefits

Interviews with residents highlighted positive social outcomes from living in sustainable housing, which supported the technical data. The benefits they described included improved health and personal finances.

For example, these householders said they had extra spending money due to low (or no) utility bills. This meant they could buy children Christmas presents, avoid personal debt and lay-by, or go on a holiday.

I do go clothes shopping on occasion now instead of thinking, “Oh God, I have to go and lay-by that.”

Householders described how this led to reduced stress and better mental health.

The research demonstrates that the housing sector’s over-reliance on cost-benefit analysis may be overlooking important benefits (and detriments) of different housing arrangements. Combining qualitative and quantitative evaluation methods can help uncover a more detailed and complete picture of how housing affects people’s lives.

Our research also highlights how sustainable housing benefits extend beyond the environment. These flow-on effects can improve the living conditions of some of the most vulnerable members of society. This, in turn, potentially reduces pressure on health and other support systems and sectors.

Combining sustainable and affordable housing

Our study is part of an emerging body of research that challenges the idea that sustainable housing is unaffordable.

The evidence increasingly shows that sustainability and good design can improve affordability when fuller cost-benefit analyses are undertaken and non-monetised social, health and well-being benefits are considered.

To date, however, there is limited “real world” research into people living in sustainable housing, particularly in the affordable housing sector. Without more multidisciplinary evaluations of this kind, we are left with an incomplete picture of the benefits of this type of housing.

Such studies will be critically important as Australia seeks to make the transition to a more sustainable future. Climate change and increased livability costs are likely to add to the challenges for social housing organisations and the tenants who depend on their services.

The Conversation

Trivess Moore receives funding from various organisations including the Australian Research Council and Victorian Department of Health and Human Services.

Cecily Maller receives funding from the National Environmental Science Program of the Australian Government, the Australian Research Council, and the Victorian Government's Department of Housing and Human Services. She is affiliated with the Institute of Australian Geographers and The Australian Sociological Association.

Ralph Horne receives funding from various organisations including the Australian Research Council and Victorian Department of Health and Human Services. He is also currently Director of the United Nations Global Compact - Cities Programme.

Yolande Strengers receives funding from the Australian Research Council, Energy Consumers Australia and the Victorian Government's Department of Health and Human Services.

Categories: Around The Web

An open letter to the Prime Minister on the climate crisis, from 154 scientists

The Conversation - Thu, 2016-08-25 06:26

Dear The Hon. Malcolm Turnbull MP, Prime Minister of Australia,

The following is an open letter signed by 154 Australian atmospheric, marine, environmental, biological and medical scientists, including several leading climatologists, for your and your government’s attention.

There is no Planet B

In July 2016, global temperatures soared to the hottest in the 136 years of the instrumental record, 0.1℃ warmer than previous warm Julys in 2015, 2011 and 2009. It followed a succession of rising temperatures, moving from 0.42℃ above average in 2000, to 0.87℃ above average by 2015.

Developments in the atmosphere-ocean system reported by major climate research organisations (including NASA, the US National Oceanic and Atmospheric Administration, the US National Snow & Ice Data Center, the UK Met Office Hadley Centre, the Tyndall Centre, the Potsdam Institute; the science academics of dozens of nations; and in Australia the CSIRO and Bureau of Meteorology) include:

We are concerned that global warming, amplified by feedbacks from polar ice melt, methane release from permafrost, and extensive fires, may become irreversible, including the possible collapse of the Atlantic Meridional Overturning Circulation, a crucial component of the global climate system that transfers heat from the tropics to the North Atlantic.

According to James Hansen, NASA’s former chief climate scientist, “burning all fossil fuels would create a different planet than the one that humanity knows“. Joachim Schellnhuber, Germany’s chief climate scientist, has summed up the situation by saying: “We’re simply talking about the very life support system of this planet.”

We note your broad agreement with this point, in light of your 2010 statement that:

…we are as humans conducting a massive science experiment with this planet. It’s the only planet we have got… We know that the consequences of unchecked global warming would be catastrophic… We as a human species have a deep and abiding obligation to this planet and to the generations that will come after us.

While the Paris Agreement remains unbinding and global warming has received minimal attention in the recent elections, governments worldwide are presiding over a large-scale demise of the planetary ecosystems, which threatens to leave large parts of Earth uninhabitable.

We call on the Australian government to tackle the root causes of an unfolding climate tragedy and do what is required to protect future generations and nature, including meaningful reductions of Australia’s peak carbon emissions and coal exports, while there is still time.

There is no Planet B.

Yours sincerely,

Dr Christine Adams-Hosking, Conservation planner, University of Queensland

Associate Professor Stephen Adelstein, Medical scientist, University of Sydney

Professor Ross Alford, Tropical ecologist, James Cook University

Dr Wallace Ambrose, Archaeological anthropologist, ANU

Dr Martin Anda, Environmental engineer, Murdoch University

Dr Marion Anderston, Geochemist, Monash University

Professor Michael Archer, Paleontologist, UNSW Australia

Dr Leanne Armand, Marine Researcher, Macquarie University

Professor Patricia Armati, Medical scientist, University of Sydney

Professor Owen Atkin, Plant respiration researcher, ANU

Professor Elaine Baker, Marine scientist, University of Sydney

Associate Professor Cathy Banwell, Medical scientist, ANU

Dr Andrew Barnes, Aquatic animal health researcher, University of Queensland

Dr Fiona Beck, Renewable energy researcher, ANU

Dr Tom Beer, Climatic and environmental change researcher, CSIRO

Professor Andrew Blakers, Photovoltaics/energy storage researcher, ANU

Professor Phillip Board, Medical scientist, ANU

Professor Justin Borevitz, Plant geneticist, ANU

Dr Caryl Bosman, Environmental planning researcher, Griffith University

Professor David Bowman, Forestry researcher, University of Tasmania

Dr Timothy Broadribb, Plant Scientist, University of Tasmania

Dr Helen Brown, Environmental health researcher, Curtin University

Dr Tim Brown, Medicine and environment researcher, ANU

Professor Ralf Buckley, Conservation/ecotourism researcher, Griffith University

Dr Florian Busch, Plant scientist, ANU

Dr Jason Byrne, Urban design researcher, Curtin University

Professor Maria Byrne, Marine and developmental biologist, University of Sydney

Dr Martina Calais, Renewable energy researcher, Murdoch University

Associate Professor Craig Carter, Engineering and IT researcher, Murdoch University

Dr Phill Cassey, Ecologist, Adelaide University

Professor Carla Catterall, Ecologist, Griffith University

Dr Juleen Cavanaugh, Biomedical scientist, ANU

Professor Fred Chow, Plant biologist, ANU

Associate Professor David Cohen, Geochemist, UNSW Australia

Professor Steven Cooper, Evolutionary biologist, SA Museum

Professor Rod Connolly, Marine scientist, Griffith University

Professor Jann Conroy, Plant scientist, Western Sydney University

Dr Lucy Coupland, Medical scientist, ANU

Dr Joseph Coventry, Solar energy researcher, ANU

Dr Chris Creagh, Physicist, Murdoch University

Professor Patricia Dale, Environment/planning researcher, Griffith University

Dr Armanda Davies, Planning geographer, Curtin University

Dr Ian Davies, Forestry fire management researcher, ANU

Dr Kirsten Davies, Ethno-ecology and environmental law researcher, Macquarie University

Dr Robert Davis, Vertebrate biologist, Edith Cowan University

Professor Keith Dear, Global health researcher, ANU

Dr Fjalar de Haan, Sustainability researcher, University of Melbourne

Professor Hans Peter Dietz, Medical scientist, Penrith Hospital

Professor Bob Douglas, Medical scientist, ANU

Associate Professor Mark Douglas, Medical scientist, University of Sydney

Dr Jen Drysdale, Climate and energy researcher, University of Melbourne

Professor Angela Dulhunty, Medical scientist, ANU

Professor Robyn Eckersley, Climate change governance researcher, University of Melbourne

Dr Elin Charles Edwards, Environmental geographer, University of Queensland

Professor David Eldridge, Evolutionary biologist, UNSW Australia

Professor David Elsworth, Environmental ecologist, Western Sydney University

Associate Professor Jason Evans, Climate change researcher, UNSW Australia

Dr Isabelle Ferru, Medical scientist, ANU

Professor Tim Flannery, Climate Council

Professor Barry Fox, Ecologist, UNSW Australia

Dr Evan Franklin, Solar energy researcher, ANU

Dr Diego Garcia-Bellido, Paleontologist, University of Adelaide

Dr Stephen Garnett, Conservation and sustainability researcher, Charles Darwin University

Dr John Gillen, Soil scientist, ANU

Dr Andrew Glikson, Paleoclimatologist, ANU

Dr Susan Gould, Climate change researcher, Griffith UNiversity

Professor Colin Groves, Anthropologist, ANU

Dr Huade Guan, Hydro-meteorologist, Flinders University

Professor Neil Gunningham, Global governance researcher, ANU

Dr Asish Hagar, Medical scientist, UNSW Australia

Dr Nina Hall, Sustainable water researcher, University of Queensland

Dr Willow Hallgren, Atmospheric scientist, Griffith University

Dr Elizabeth Hanna, Environmental health researcher, ANU

Associate Professor David Harley, Epidemiologist, ANU

Professor Robert S. Hill, Paleobotanist, University of Adelaide

Professor Ove Hoegh-Guldberg, Marine climatologist and Great Barrier Reef researcher, University of Queensland

Professor Geoff Hope, Archaeologist and natural history researcher, ANU

Associate Professor Michael Howes, Environmental scientist, Griffith University

Professor Lesley Hughes, Climate change and species researcher, University of Adelaide

Dr Paul Humphries, Environmental scientist, Charles Sturt University

Professor Phillip Jenning, Energy researcher, Murdoch University

Professor Darryl Jones, Behavioural ecologist, Griffith University

Dr Hugh Jones, Medical scientist, University of Western Australia

Dr Jochen Kaempf, Physical oceanographer, Flinders University

Professor Jeffrey Keelan, Medical scientist, University of Western Australia

Professor Peter Kershaw, Biogeographer and botanist, Monash University

Dr Carsten Kulheim, Plant physiologist, ANU

Professor Rakkesh Kumar, Medical scientist, UNSW Australia

Dr Lori Lach, Rainforest conservationist, James Cook University

Professor Barry Lacopetta, Medical scientist, University of Western Australia

Professor Trevor Lamb, Medical scientist, ANU

Professor Tony Larkum, Plant biologist, University of Technology Sydney

Dr Annie Lau, Geography and environmental management researcher, University of Quensland

Professor Bill Laurance, Tropical environment and sustainability researcher, James Cook University

Associate Professor Fred Leusch, Soil, water and energy researcher, Griffith University

Professor Andrew Lowe, Plant conservationist, University of Adelaide

Dr Fabio Luciano, Medical scientist, UNSW Australia

Professor Justin Marshall, Marine biologist, University of Queensland

Dr Melanie Massaro, Ecologist and ornithologist, Charles Sturt University

Associate Professor John F. McCarthy, Resource environment researcher, ANU

Dr Allison McInnes, Plant biologist, UTS

AssociateProfessor Andrew McKenzie, Landscape planning researcher, University of Canberra

Dr Kathryn McMahon, Environmental researcher, Edith Cowan University

Professor Andrew Millington, Land change scientist, Flinders University

Professor Angela Moles, Evolutionary ecologist, UNSW Australia

Professor Renee Morris, Medical scientist, UNSW Australia

Professor Barbara Norman, Urban planning researcher, University of Canberra

Professor Nikos Ntoumanis, Behavioural medicine researcher, Curtin University

Dr Bradley Opdyke, Climate historian, ANU

Professor Richard G. Pearson, Marine and tropical biologist, James Cook University

Dr Barrie Pittock, Climate scientist, CSIRO

Dr Jason Potas, Medical scientist, ANU

Professor Susan Prescott, Medical scientist, University of Western Australia

Dr Lynda Prior, Climate researcher, University of Tasmania

_Dr Thomas Prowse, Biologist, University of Adelaide

Professor Marie Ranson, Molecular biologist, University of Wollongong

Professor Steve Redman, Medical scientist, ANU

Associate Professor Tracy Rogers, Evolutionary ecologist, UNSW Australia

Professor Chris Ryan, Eco-innovation researcher, University of Melbourne

Dr Oz Sahnin, Climate change researcher, Griffith University

Associate Professor Peter Sainsbury, Climate and health researcher, University of Sydney

Professor David Sinclair, Medical scientist, UNSW Australia

Dr Tom Sobey, Medical scientist, UNSW Australia

Professor Will Steffen, Climate change researcher, ANU

_Professor Peter Steinberg, Marine scientist, UNSW Australia

Associate Professor Christian Stricker, Medical scientist, ANU

Professor Ian Suthers, Marine biologist, UNSW Australia

Associate Professor Sue Taylor, Medical scientist, University of Western Australia

Dr Sebastian Thomas, Sustainability researcher, University of Melbourne

_Dr Andrew Thomson, Solar researcher, ANU

Associate Professor Thomas Thorsten, Marine biologist, UNSW Australia

Associate Professor Ian Tibbetts, Marine Scientist, University of Queensland

Professor David Tissue, Plant ecophysiologist, Western Sydney University

Professor Matthias Tomczak, Oceanographer, Flinders University

Mr Shane Toohey, Medical scientist, University of Western Australia

Dr Gail Trapp, Medical scientist, UNSW Australia

Professor Patrick Troy, Human ecologist, ANU

Professor Tom Trull, Antarctic, oceans and atmosphere researcher, CSIRO

Professor David Tscharke, Medical scientist, ANU

Professor Chris Turney, Antarctic climatologist, UNSW Australia

Dr Tania Urmee, Renewable energy technologist, Murdoch University

Professor René Vaillancourt, Plant geneticist, University of Tasmania

Professor John Veevers, Earth scientist, Macquarie University

Professor Charlie Veron, Marine scientist, Australian Institute of Marine Science

Professor Phil Waite, Medical scientist, UNSW Australia

Dr Elaine Walker, Physics and energy researcher, Murdoch University

Dr Hayden Washington, Environmental researcher, UNSW Australia

Professor David Watson, Water and society ecologist, Charles Sturt University

Dr Scarla J. Weeks, Biophysical oceanographer, University of Queensland

Professor Adrian Werner, Hydrologist, Flinders University

_Mr Peter Weiske, Medical and environmental scientist, ANU

Dr Jonathan Whale, Energy researcher, Murdoch University

_Associate Professor George Wilson, Wildlife management researcher, ANU

Dr Phillip Zylstra, Forests and fire researcher, University of Wollongong

The Conversation

Andrew Glikson does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond the academic appointment above.

Categories: Around The Web

Pages

Subscribe to Sustainable Engineering Society aggregator